Urban Fasel


Postdoctoral Fellow University of Washington

Ensemble-SINDy: Robust sparse model discovery in the low-data, high-noise limit, with active learning and control


Journal article


Urban Fasel, J. Nathan Kutz, Bingni W. Brunton, Steven L. Brunton
Proceedings of The Royal Society A: Mathematical, Physical and Engineering Sciences, 2022


View PDF arXiv
Cite

Cite

APA
Fasel, U., Kutz, J. N., Brunton, B. W., & Brunton, S. L. (2022). Ensemble-SINDy: Robust sparse model discovery in the low-data, high-noise limit, with active learning and control. Proceedings of The Royal Society A: Mathematical, Physical and Engineering Sciences.

Chicago/Turabian
Fasel, Urban, J. Nathan Kutz, Bingni W. Brunton, and Steven L. Brunton. “Ensemble-SINDy: Robust Sparse Model Discovery in the Low-Data, High-Noise Limit, with Active Learning and Control.” Proceedings of The Royal Society A: Mathematical, Physical and Engineering Sciences (2022).

MLA
Fasel, Urban, et al. “Ensemble-SINDy: Robust Sparse Model Discovery in the Low-Data, High-Noise Limit, with Active Learning and Control.” Proceedings of The Royal Society A: Mathematical, Physical and Engineering Sciences, 2022.